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ABSTRACT

At the melody extraction task at MIREX, new and
improved methods has been presented within the last few
years. Some of the more successful methods are somewhat
complicated. This paper briefly presents a very simple
method, which seems to be able to compete with the more
complicated methods. The method does not detect the
presence of the melody — it is assumed that a melody is
always present. The method is based on 2 modifications
of the SHS method, and uses a simple time/frequency
representation of the audio signal.

1 Introduction
Although improved methods have been presented at the
MIREX melody extraction tasks within the last few years,
it still seems to be a very difficult task to extract the
fundamental frequency of the melody. At the melody
extraction task it is possible to get a notion of how
well a method performs compared to other methods. It is
important to notice that the performance of the methods
that participated at the previous competitions seems to
depend a lot on the test files. The authors have done an
excellent job but it seems to be very difficult to develop
a method that performs well on a lot of different audio
files. Even the best methods that participated in 2008 only
achieved a raw pitch score of around 60% for one or more
files.

This paper presents a very simple method that seems to
be able to compete with some of the best methods from the
MIREX 2008 competition. This could indicate that radical
new methods need to be developed in order to achieve
higher scores.

The method described in this paper only deals with
the task of estimating the fundamental frequency of the
melody and does not detect if the melody is present.

2 Method description
The method is briefly described in the following. For more
details, see [7] (in Danish).

2.1 Time/frequency representation using OQSTFT

Often the melody consists of harmonic sounds. Two very
used musical effects are vibrato and glissando, where
the fundamental frequency changes over time. When the
fundamental frequency of a harmonic sound vibrate, the

higher harmonics vibrate over a wider frequency range
than that of the lower harmonics. In order to get a relatively
clear picture of how the higher harmonics change over
time a STFT with a short window length i needed. But
in the lower harmonics it would be preferable to use a
STFT with a long window length, as this would facilitate
accurate detection of the frequency of each harmonic.
Judith Brown has suggested the use of a Constant Q
spectral transform [1] where the window length is halved
when the frequency doubles. Unfortunately, it seems like
this makes the window length too short in the higher
frequencies and too long in the lower frequencies. A good
compromise between the constant window length in a
normal STFT and the window length used by Brown is the
window length used in Optimal Q-STFT (OQSTFT) [7],
where the window length is halved when the square root of
the frequency is doubled.

Let us think about a harmonic chirp and let us try to find
a good time/frequency resolution for every harmonic. The
uncertainty in time and frequency can’t really be illustrated
as a rectangular box but let us do it anyway, as it is a useful
approximation. The size of the area of the rectangular box
has a lower bound due to the uncertainty principle. In
order to minimize the influence of frequency components
from other sounds we want to fit the rectangular box as
close to the chirp as possible. This is the case when the
chirp represents the diagonal of the rectangular box. 1 So
the chirpy-ness (the gradient) of the chirp determinates
the ratio between the uncertainty in time (the length of
the rectangular box) and the uncertainty in frequency (the
height of the rectangular box). The area of the rectangular
box is constant and is determinated by the uncertainty
principle. The chirpy-ness of the chirp is called c, the area
of the rectangular box is called A and the length of the
box is called l. Remember that the average frequency of an
arbitrary harmonic is calculated as νx = xν1, where ν1 is
the average frequency of the lowest harmonic and x states
the number of the harmonic. So let us calculate the optimal
window length at frequency νx under the assumption that
we know the optimal window length at frequency ν1. We
start with the area of the rectangular boxes at frequency ν1
and νx, as we know that the area is constant:

A1 = Ax ⇒ cl2
1 = xcl2

x ⇒ lx =
1√
x

l1. (1)

1 By using a chirplet transform it is also possible to rotate the
rectangular box. The Matching Pursuit introduced by Mallat and Zhang
in [6] is an example of an efficient implementation of a chirplet transform.
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So if the optimal window length l1 is known at
frequency ν1 we can calculate the optimal window length
lx at frequency νx = xν1 using equation 1. Now the problem
is that we have to find the optimal window length at
frequency ν1. Experiments have shown that a window
length of about 0.04 seconds at a frequency of about 1,000
Hz, generally serves as a good choice when analyzing
music.

The final definition of the OQSTFT is:

oqstft{s}(t,ν) =
√

ν

∫
∞

−∞

s(τ)w(
√

ν(τ− t))ei2πν(τ−t)dτ

(2)

where OQSTFT is calculated for the signal s at the time t
and the frequency ν , and where a window w is used. In the
integration we integrate over time τ .

OQSTFT can be calculated fast by using the method
that Brown [2] uses to calculate the Constant Q transform.

Implementation First the audio signal is downsampled
to 14,700 Hz so that further calculations can be based
on the frequencies up to approximately 7,000 Hz. Then a
normal STFT is calculated. The window length is 92.88
ms (4,096 samples at a sample rate of 44,100 Hz), so the
distance between 2 frequency bins is 10.767 Hz. Using the
spectrum of a Hann window, the OQSTFT is calculated
by convoluting the STFT with Hann windows of different
lengths. To get an artificially high frequency resolution,
OQSTFT is calculated at a frequency distance of 5.833
Hz. For frequencies below 172.27 Hz the window length
is constant.

The implemented OQSTFT runs about 5 times slower
than a normal STFT, so in order to speed up the
calculations a multi-resolution STFT that approximates
the OQSTFT could be used. A good example of a multi-
resolution STFT is the one used by Dressler in [4].

Using OQSTFT instead of a normal STFT seems
to improve the identification of the melody by a
few percentage points especially when the fundamental
frequency vibrate.

2.2 Spectral analysis using a modified SHS

The spectral analysis is based on a few modifications to
the subharmonic summation (SHS) method which was
introduced by Dik Hermes [5]. Inspired by the spectral
normalized factor used by Cao et al. in [3], a simpler
spectral normalized factor introduced by Wendelboe in
[7] is used. Another modification called the smoothing
factor is also used to prevent too many octave errors.
The smoothing factor was also introduced in [7]. In the
following sections the new spectral normalized factor and
the smoothing factor are briefly described.

2.3 The spectral normalized factor

The idea behind the spectral normalized factor is, that a
frequency component is important if it is stronger than
the surrounding frequency components. So the spectral
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Figure 1. Here a gaussian function and a discrete
approximation with 8 levels are shown.

normalized factor tells how strong a frequency component
is relatively to the surrounding frequency components. A
function called ρ determines the width of the surroundings.
For low frequencies the surroundings are narrow and for
high frequencies the surroundings are wide.

In the following equation the spectral normalized factor
is defined. The calculations are based on the power
spectrum which is indicated by the symbol P. As a symbol
for the frequency, ν is used. In the integration we integrate
over the frequency which is indicated by the symbol ξ .
When integrating over the frequencies a window w is used.
The window is localized at the frequency ν and has a width
determined by the function ρ.

Pnorm(ν) =
P(ν)
2ρ(ν)

∫
ν+ρ(ν)

ν−ρ(ν)
w(ν ,ξ )P(ξ )dξ (3)

The integration term divided by the term 2ρ(ν) states
a weighted power average. In order to speed up the
calculations of the integration, a summed power spectrum
is calculated and an approximation to a Gaussian function
is used as window — see figure 1. For every level in
the discrete approximation to the Gaussian function (the
window w in the equation), a sort of power average is
calculated by a difference in the summed power spectrum.
By summing the averages for every level a sort of weighted
power average is calculated. For more details see [7].

2.4 The smoothing factor

The idea behind the smoothing factor is motivated by
the supposition that the frequency envelope curve of a
harmonic tone often follows a smooth curve. Actually the
smoothing factor is a function that calculates an estimated
strength of a frequency. The function takes 2 arguments:
The first argument, ν0, is the fundamental frequency of an
assumed harmonic tone, and the second argument, n, is the
number of the harmonic. The function uses 2 constants,
u− and u+, which tell how much the strength of a given
harmonic depends on the strength of the neighboring



harmonics. The function is defined as:

Pavg(ν0,n) =u−P
(
(n−1)ν0

)
+(1−u−−u+)P

(
nν0
)

+u+P
(
(n+1)ν0

)
Psmooth(ν0,n) =min

(
Pavg(ν0,n),P(nν0)

)
(4)

2.5 Putting it together

First we introduce a special notation. We want to be able
to specify that calculations of the smoothing factor are
based on the normalized spectrum. This is specified by
Psmooth{Pnorm}(ν0,n).

So, first we calculate a time/frequency representation by
using OQSTFT. Then for every time step the spectrum,
P, is extracted and a normalized spectrum, Pnorm, is
calculated. Using the smoothing factor as a function, the
modified SHS is then calculated as:

shsmodi f ied(ν0) =
N

∑
n=1

h(n)Psmooth{Pnorm}(ν0,n) (5)

The modified SHS is calculated for frequencies between
100 and 1,200 Hz, at a distance of 1.3458 Hz. The function
h is defined as: h(n) = bn−1, where b = 0.95. N specifies
the number of harmonics and is equal to 20, because the
human voice often has strong harmonics in the frequency
band around 2,000 to 3,000 Hz, even if the fundamental
frequency is low and around 150 Hz.

The frequency which gives the highest SHS value is
chosen as the estimated fundamental frequency of the
melody. The method does not detect if a melody is present
in the audio signal.

3 Results
This year 4 different datasets were used in the competition.
One of the datasets (ADC 2004) is public. The datasets can
be described as:

• ADC 2004: 20 excerpts of about 20 sec. each from
the following genres: Jazz, Midi, Pop, Opera.

• MIREX 2005: 25 phrase excerpts of 10-40 sec. from
the following genres: Rock, R&B, Pop, Jazz, Solo
classical piano.

• MIREX 2008: 4 excerpts of 1 min. from "north
Indian classical vocal performances".

• MIREX 2009: Karaoke recordings of Chinese songs
with a singing voice (male, female) and synthetic
accompaniment.

Table 1, 2, 3 and 4 states the results for Raw Pitch and
Raw Chroma, and table 5 states the running time of the
participating implementations. The participants listed in
the tables are:

• cl1: Chuan Cao, Ming Li

• dr2: Jean-Louis Durrieu, Gaël Richard (SIMM)
• hjc1: Chao-Ling Hsu, Jyh-Shing Roger Jang, Liang-

Yu Chen (DP)
• jjy: Sihyun Joo, Seokhwan Jo, Chang D. Yoo
• kd: Karin Dressler
• mw: Morten Wendelboe
• pc: Pablo Cancela
• rr: Vishweshwara Rao,Preeti Rao
• toos: Hideyuki Tachibana, Takuma Ono, Nobutaka

Ono, Shigeki Sagayama

This year the competition was very close. For each
dataset the best performing algorithms achieved about
the same score. Ranked by the Raw Chroma score the
algorithm presented in this paper was among the 3 best
performing algorithms when dealing with the 3 first
datasets. Unfortunately the algorithm had problems with
last dataset. The implementation was about 5 times slower
than the fastest participating implementation, but it was
still much faster than the slowest implementations.

Again this year Karin Dressler delivered the fastest and
best performing implementation.

ADC 2004
Participant Raw Pitch Raw Chroma
kd 87.1 % 87.6 %
jjy 83.3 % 87.0 %
mw 82.3 % 86.4 %
cl1 85.1 % 86.3 %
rr 76.9 % 85.1 %
dr2 81.2 % 83.6 %
pc 82.9 % 83.4 %
hjc1 63.9 % 73.6 %
toos 61.0 % 71.8 %

Table 1. Results for ADC 2004 dataset, ordered by Raw
Chroma.

MIREX 2005
Participant Raw Pitch Raw Chroma
kd 76.4 % 80.9 %
mw 75.0 % 80.6 %
jjy 69.5 % 76.5 %
rr 69.0 % 76.4 %
dr2 70.4 % 76.0 %
toos 67.5 % 74.0 %
cl1 70.1 % 73.5 %
hjc1 59.1 % 70.8 %
pc 68.0 % 70.4 %

Table 2. Results for MIREX 2005 dataset, ordered by Raw
Chroma.



MIREX 2008
Participant Raw Pitch Raw Chroma
mw 86.0 % 88.9 %
kd 87.8 % 88.8 %
dr2 86.6 % 86.8 %
rr 86.2 % 86.7 %
toos 79.8 % 83.7 %
pc 81.8 % 82.0 %
jjy 68.3 % 81.9 %
hjc1 67.6 % 74.9 %
cl1 50.8 % 51.3 %

Table 3. Results for MIREX 2008 dataset, ordered by Raw
Chroma.

MIREX 2009 mixed at 0dB
Participant Raw Pitch Raw Chroma
toos 82.3 % 85.7 %
kd 80.5 % 81.9 %
jjy 75.9 % 80.2 %
hjc1 72.7 % 75.3 %
rr 68.6 % 71.4 %
mw 67.3 % 71.0 %
dr2 66.6 % 70.8 %
cl1 59.1 % 63.0 %
pc 50.9 % 53.4 %

Table 4. Results for MIREX 2009 dataset, ordered by Raw
Chroma.

4 Conclusion
Given the simplicity of the algorithm the achieved results
are good. The algorithm is relatively fast and performs
well on 3 out of the 4 datasets. During the development
of the algorithm it was tested on a dataset consisting of
western popular music, so it was not expected that the
algorithm performed well on the dataset consisting of
karaoke recordings of Chinese songs.
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